Cu-ZrO2 catalysts with highly dispersed Cu nanoclusters derived from ZrO2@ HKUST-1 composites for the enhanced CO2 hydrogenation to methanol

نویسندگان

چکیده

• ZrO 2 @HKUST-1 composite was calcined to prepare Cu-ZrO catalysts with Cu nanoclusters. The catalyst significantly improved space time yield of CH 3 OH CO hydrogenation. is 5.2 times higher than reported under similar conditions. Controlled formation more interfaces that enhance activation. Pathways for the product and by-products are revealed via DFT calculations. In this study, a series highly dispersed nanoclusters were prepared calcination reduction @HKUST-1. These demonstrated an outstanding selectivity in methanol during space-time (STY) those by other researchers, which using conventional method tested same Density functional theory (DFT) study activation occurs at facilitates hydrogenation methanol. It concluded controlled not only provides large number efficient active centers hydrogenation, but also leads generation interfaces. two effects contribute superior catalytic performance nano

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol

Although methanol synthesis via CO hydrogenation has been industrialized, CO2 hydrogenation to methanol still confronts great obstacles of low methanol selectivity and poor stability, particularly for supported metal catalysts under industrial conditions. We report a binary metal oxide, ZnO-ZrO2 solid solution catalyst, which can achieve methanol selectivity of up to 86 to 91% with CO2 single-p...

متن کامل

Response to Comment on "Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts".

In their Comment on the our recent Report, Nakamura et al argue that our x-ray photoelectron spectroscopy (XPS) analysis was affected by the presence of formate species on the catalyst surface. This argument is not valid because the reactant gases were evacuated at temperatures from 525 to 575 kelvin, conditions under which formate is not stable on the catalyst surface. An analysis of the XPS r...

متن کامل

On the resistive switching mechanisms of Cu/ZrO2 :Cu/Pt

We use convincing experimental evidences to demonstrate that the nonpolar resistive switching phenomenon observed in Cu /ZrO2 :Cu /Pt memory devices conforms to a filament formation and annihilation mechanism. Temperature-dependent switching characteristics show that a metallic filamentary channel is responsible for the low resistance state "ON state#. Further analysis reveals that the physical...

متن کامل

Steam reforming of methanol over Cu/ZrO2/CeO2 catalysts: a kinetic study

Steam reforming of methanol (SRM) was investigated over Cu/ZrO2/CeO2 (CZC) catalysts prepared via a novel synthetic method based on coprecipitation and polymer templating. Structural characterization of the samples was performed by N2 adsorption-desorption, N2O decomposition, and X-ray diffraction. The variation of the Cu loading resulted in an increased Cu crystallite size and a decreased spec...

متن کامل

Comment on "Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts".

Kattel et al (Reports, 24 March 2017, p. 1296) report that a zinc on copper (Zn/Cu) surface undergoes oxidation to zinc oxide/copper (ZnO/Cu) during carbon dioxide (CO2) hydrogenation to methanol and conclude that the Cu-ZnO interface is the active site for methanol synthesis. Similar experiments conducted two decades ago by Fujitani and Nakamura et al demonstrated that Zn is attached to format...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chemical Engineering Journal

سال: 2021

ISSN: ['1873-3212', '1385-8947']

DOI: https://doi.org/10.1016/j.cej.2021.129656